Security Model
Comprehensive security architecture ensuring zero-trust, policy-driven protection for AI agents.
Table of contents
- Overview
- Multi-Tier Sandboxing
- Policy Engine
- Cryptographic Security
- Audit and Compliance
- Tool Security with SchemaPin
- Network Security
- Incident Response
- Security Best Practices
- Security Configuration
- Security Metrics
- Future Enhancements
- Next Steps
Overview
Symbiont implements a security-first architecture designed for regulated and high-assurance environments. The security model is built on zero-trust principles with comprehensive policy enforcement, multi-tier sandboxing, and cryptographic auditability.
Security Principles
- Zero Trust: All components and communications are verified
- Defense in Depth: Multiple security layers with no single point of failure
- Policy-Driven: Declarative security policies enforced at runtime
- Complete Auditability: Every operation logged with cryptographic integrity
- Least Privilege: Minimal permissions required for operation
Multi-Tier Sandboxing
The runtime implements two isolation tiers based on risk assessment:
graph TB
A[Risk Assessment Engine] --> B{Risk Level}
B -->|Low Risk| C[Tier 1: Docker]
B -->|Medium/High Risk| D[Tier 2: gVisor]
subgraph "Tier 1: Container Isolation"
C1[Container Runtime]
C2[Resource Limits]
C3[Network Isolation]
C4[Read-only Filesystem]
end
subgraph "Tier 2: User-space Kernel"
D1[System Call Interception]
D2[Memory Protection]
D3[I/O Virtualization]
D4[Enhanced Isolation]
end
C --> C1
D --> D1
Note: Additional isolation tiers with hardware virtualization are available in Enterprise editions.
Tier 1: Docker Isolation
Use Cases:
- Trusted development tasks
- Low-sensitivity data processing
- Internal tool operations
Security Features:
docker_security:
memory_limit: "512MB"
cpu_limit: "0.5"
network_mode: "none"
read_only_root: true
security_opts:
- "no-new-privileges:true"
- "seccomp:default"
capabilities:
drop: ["ALL"]
add: ["SETUID", "SETGID"]
Threat Protection:
- Process isolation from host
- Resource exhaustion prevention
- Network access control
- Filesystem protection
Tier 2: gVisor Isolation
Use Cases:
- Standard production workloads
- Sensitive data processing
- External tool integration
Security Features:
- User-space kernel implementation
- System call filtering and translation
- Memory protection boundaries
- I/O request validation
Configuration:
gvisor_security:
runtime: "runsc"
platform: "ptrace"
network: "sandbox"
file_access: "exclusive"
debug: false
strace: false
Advanced Protection:
- Kernel vulnerability isolation
- System call interception
- Memory corruption prevention
- Side-channel attack mitigation
Enterprise Feature: Advanced isolation with hardware virtualization (Firecracker) is available in Enterprise editions for maximum security requirements.
Risk Assessment Algorithm
pub struct RiskAssessment {
data_sensitivity: f32, // 0.0 = public, 1.0 = top secret
code_trust_level: f32, // 0.0 = untrusted, 1.0 = verified
network_access: bool, // Requires external network
filesystem_access: bool, // Requires filesystem write
external_apis: bool, // Uses external services
}
pub fn calculate_risk_score(assessment: RiskAssessment) -> f32 {
let base_score = assessment.data_sensitivity * 0.4
+ (1.0 - assessment.code_trust_level) * 0.3;
let access_penalty = if assessment.network_access { 0.1 } else { 0.0 }
+ if assessment.filesystem_access { 0.1 } else { 0.0 }
+ if assessment.external_apis { 0.1 } else { 0.0 };
(base_score + access_penalty).min(1.0)
}
Policy Engine
Policy Architecture
The policy engine provides declarative security controls with runtime enforcement:
graph TB
A[Policy Definition] --> B[Policy Parser]
B --> C[Policy Store]
C --> D[Policy Engine]
D --> E[Enforcement Points]
E --> F[Agent Creation]
E --> G[Resource Access]
E --> H[Message Routing]
E --> I[Tool Invocation]
E --> J[Data Operations]
K[Audit Logger] --> L[Policy Violations]
E --> K
Policy Types
Access Control Policies
Define who can access what resources under which conditions:
policy secure_data_access {
allow: read(sensitive_data) if (
user.clearance >= "secret" &&
user.need_to_know.contains(data.classification) &&
session.mfa_verified == true
)
deny: export(data) if data.contains_pii == true
require: [
user.background_check.current,
session.secure_connection,
audit_trail = "detailed"
]
}
Data Flow Policies
Control how data moves through the system:
policy data_flow_control {
allow: transform(data) if (
source.classification <= target.classification &&
user.transform_permissions.contains(operation.type)
)
deny: aggregate(datasets) if (
any(datasets, |d| d.privacy_level > operation.privacy_budget)
)
require: differential_privacy for statistical_operations
}
Resource Usage Policies
Manage computational resource allocation:
policy resource_governance {
allow: allocate(resources) if (
user.resource_quota.remaining >= resources.total &&
operation.priority <= user.max_priority
)
deny: long_running_operations if system.maintenance_mode
require: supervisor_approval for high_memory_operations
}
Policy Evaluation Engine
pub trait PolicyEngine {
async fn evaluate_policy(
&self,
context: PolicyContext,
action: Action
) -> PolicyDecision;
async fn register_policy(&self, policy: Policy) -> Result<PolicyId>;
async fn update_policy(&self, policy_id: PolicyId, policy: Policy) -> Result<()>;
}
pub enum PolicyDecision {
Allow,
Deny { reason: String },
AllowWithConditions { conditions: Vec<PolicyCondition> },
RequireApproval { approver: String },
}
Performance Optimization
Policy Caching:
- Compiled policy evaluation for performance
- LRU cache for frequent decisions
- Batch evaluation for bulk operations
- Sub-millisecond evaluation times
Incremental Updates:
- Real-time policy updates without restart
- Versioned policy deployment
- Rollback capabilities for policy errors
Cryptographic Security
Digital Signatures
All security-relevant operations are cryptographically signed:
Signature Algorithm: Ed25519 (RFC 8032)
- Key Size: 256-bit private keys, 256-bit public keys
- Signature Size: 512 bits (64 bytes)
- Performance: 70,000+ signatures/second, 25,000+ verifications/second
pub struct CryptographicSignature {
pub algorithm: SignatureAlgorithm::Ed25519,
pub public_key: PublicKey,
pub signature: [u8; 64],
pub timestamp: SystemTime,
}
impl AuditEvent {
pub fn sign(&mut self, private_key: &PrivateKey) -> Result<()> {
let message = self.serialize_for_signing()?;
self.signature = private_key.sign(&message);
Ok(())
}
pub fn verify(&self, public_key: &PublicKey) -> bool {
let message = self.serialize_for_signing().unwrap();
public_key.verify(&message, &self.signature)
}
}
Key Management
Key Storage:
- Hardware Security Module (HSM) integration
- Secure enclave support for key protection
- Key rotation with configurable intervals
- Distributed key backup and recovery
Key Hierarchy:
- Root signing keys for system operations
- Per-agent keys for operation signing
- Ephemeral keys for session encryption
- External keys for tool verification
pub struct KeyManager {
hsm: HardwareSecurityModule,
key_store: SecureKeyStore,
rotation_policy: KeyRotationPolicy,
}
impl KeyManager {
pub async fn generate_agent_keys(&self, agent_id: AgentId) -> Result<KeyPair>;
pub async fn rotate_keys(&self, key_id: KeyId) -> Result<KeyPair>;
pub async fn revoke_key(&self, key_id: KeyId) -> Result<()>;
}
Encryption Standards
Symmetric Encryption: AES-256-GCM
- 256-bit keys with authenticated encryption
- Unique nonces for each encryption operation
- Associated data for context binding
Asymmetric Encryption: X25519 + ChaCha20-Poly1305
- Elliptic curve key exchange
- Stream cipher with authenticated encryption
- Perfect forward secrecy
Message Encryption:
pub fn encrypt_message(
plaintext: &[u8],
recipient_public_key: &PublicKey,
sender_private_key: &PrivateKey
) -> Result<EncryptedMessage> {
let shared_secret = sender_private_key.diffie_hellman(recipient_public_key);
let nonce = generate_random_nonce();
let ciphertext = ChaCha20Poly1305::new(&shared_secret)
.encrypt(&nonce, plaintext)?;
Ok(EncryptedMessage {
nonce,
ciphertext,
sender_public_key: sender_private_key.public_key(),
})
}
Audit and Compliance
Cryptographic Audit Trail
Every security-relevant operation generates an immutable audit event:
pub struct AuditEvent {
pub event_id: Uuid,
pub timestamp: SystemTime,
pub agent_id: AgentId,
pub event_type: AuditEventType,
pub details: serde_json::Value,
pub signature: Ed25519Signature,
pub previous_hash: Hash,
pub event_hash: Hash,
}
Audit Event Types:
- Agent lifecycle events (creation, termination)
- Policy evaluation decisions
- Resource allocation and usage
- Message sending and routing
- External tool invocations
- Security violations and alerts
Hash Chaining
Events are linked in an immutable chain:
impl AuditChain {
pub fn append_event(&mut self, mut event: AuditEvent) -> Result<()> {
event.previous_hash = self.last_hash;
event.event_hash = self.calculate_event_hash(&event);
event.sign(&self.signing_key)?;
self.events.push(event.clone());
self.last_hash = event.event_hash;
self.verify_chain_integrity()?;
Ok(())
}
pub fn verify_integrity(&self) -> Result<bool> {
for (i, event) in self.events.iter().enumerate() {
// Verify signature
if !event.verify(&self.public_key) {
return Ok(false);
}
// Verify hash chain
if i > 0 && event.previous_hash != self.events[i-1].event_hash {
return Ok(false);
}
}
Ok(true)
}
}
Compliance Features
Regulatory Support:
HIPAA (Healthcare):
- PHI access logging with user identification
- Data minimization enforcement
- Breach detection and notification
- Audit trail retention for 6 years
GDPR (Privacy):
- Personal data processing logs
- Consent verification tracking
- Data subject rights enforcement
- Data retention policy compliance
SOX (Financial):
- Internal control documentation
- Change management tracking
- Access control verification
- Financial data protection
Custom Compliance:
pub struct ComplianceFramework {
pub name: String,
pub audit_requirements: Vec<AuditRequirement>,
pub retention_policy: RetentionPolicy,
pub access_controls: Vec<AccessControl>,
pub data_protection: DataProtectionRules,
}
impl ComplianceFramework {
pub fn validate_compliance(&self, audit_trail: &AuditChain) -> ComplianceReport;
pub fn generate_compliance_report(&self, period: TimePeriod) -> Report;
}
Tool Security with SchemaPin
Tool Verification Process
External tools are verified using cryptographic signatures:
sequenceDiagram
participant Tool as Tool Provider
participant SP as SchemaPin
participant AI as AI Reviewer
participant Runtime as Symbiont Runtime
participant Agent as Agent
Tool->>SP: Submit Tool Schema
SP->>AI: Security Analysis
AI-->>SP: Analysis Results
SP->>SP: Human Review (if needed)
SP->>SP: Sign Schema
SP-->>Tool: Signed Schema
Agent->>Runtime: Request Tool Use
Runtime->>SP: Verify Tool Schema
SP-->>Runtime: Verification Result
Runtime-->>Agent: Allow/Deny Tool Use
Trust-On-First-Use (TOFU)
Key Pinning Process:
- First encounter with a tool provider
- Verify provider’s public key through external channels
- Pin the public key in local trust store
- Use pinned key for all future verifications
pub struct TOFUKeyStore {
pinned_keys: HashMap<ProviderId, PinnedKey>,
trust_policies: Vec<TrustPolicy>,
}
impl TOFUKeyStore {
pub async fn pin_key(&mut self, provider: ProviderId, key: PublicKey) -> Result<()> {
if self.pinned_keys.contains_key(&provider) {
return Err("Key already pinned for provider");
}
self.pinned_keys.insert(provider, PinnedKey {
public_key: key,
pinned_at: SystemTime::now(),
trust_level: TrustLevel::Unverified,
});
Ok(())
}
pub fn verify_tool(&self, tool: &MCPTool) -> VerificationResult {
if let Some(pinned_key) = self.pinned_keys.get(&tool.provider_id) {
if pinned_key.public_key.verify(&tool.schema_hash, &tool.signature) {
VerificationResult::Trusted
} else {
VerificationResult::SignatureInvalid
}
} else {
VerificationResult::UnknownProvider
}
}
}
AI-Driven Tool Review
Automated security analysis before tool approval:
Analysis Components:
- Vulnerability Detection: Pattern matching against known vulnerability signatures
- Malicious Code Detection: ML-based malicious behavior identification
- Resource Usage Analysis: Assessment of computational resource requirements
- Privacy Impact Assessment: Data handling and privacy implications
pub struct SecurityAnalyzer {
vulnerability_patterns: VulnerabilityDatabase,
ml_detector: MaliciousCodeDetector,
resource_analyzer: ResourceAnalyzer,
privacy_assessor: PrivacyAssessor,
}
impl SecurityAnalyzer {
pub async fn analyze_tool(&self, tool: &MCPTool) -> SecurityAnalysis {
let mut findings = Vec::new();
// Vulnerability pattern matching
findings.extend(self.vulnerability_patterns.scan(&tool.schema));
// ML-based detection
let ml_result = self.ml_detector.analyze(&tool.schema).await?;
findings.extend(ml_result.findings);
// Resource usage analysis
let resource_risk = self.resource_analyzer.assess(&tool.schema);
// Privacy impact assessment
let privacy_impact = self.privacy_assessor.evaluate(&tool.schema);
SecurityAnalysis {
tool_id: tool.id.clone(),
risk_score: calculate_risk_score(&findings),
findings,
resource_requirements: resource_risk,
privacy_impact,
recommendation: self.generate_recommendation(&findings),
}
}
}
Network Security
Secure Communication
Transport Layer Security:
- TLS 1.3 for all external communications
- Mutual TLS (mTLS) for service-to-service communication
- Certificate pinning for known services
- Perfect forward secrecy
Message-Level Security:
- End-to-end encryption for agent messages
- Message authentication codes (MAC)
- Replay attack prevention with timestamps
- Message ordering guarantees
pub struct SecureChannel {
encryption_key: [u8; 32],
mac_key: [u8; 32],
send_counter: AtomicU64,
recv_counter: AtomicU64,
}
impl SecureChannel {
pub fn encrypt_message(&self, plaintext: &[u8]) -> Result<Vec<u8>> {
let counter = self.send_counter.fetch_add(1, Ordering::SeqCst);
let nonce = self.generate_nonce(counter);
let ciphertext = ChaCha20Poly1305::new(&self.encryption_key)
.encrypt(&nonce, plaintext)?;
let mac = Hmac::<Sha256>::new_from_slice(&self.mac_key)?
.chain_update(&ciphertext)
.chain_update(&counter.to_le_bytes())
.finalize()
.into_bytes();
Ok([ciphertext, mac.to_vec()].concat())
}
}
Network Isolation
Sandbox Network Control:
- No network access by default
- Explicit allow-list for external connections
- Traffic monitoring and anomaly detection
- DNS filtering and validation
Network Policies:
network_policy:
default_action: "deny"
allowed_destinations:
- domain: "api.openai.com"
ports: [443]
protocol: "https"
- ip_range: "10.0.0.0/8"
ports: [6333] # Qdrant
protocol: "http"
monitoring:
log_all_connections: true
detect_anomalies: true
rate_limiting: true
Incident Response
Security Event Detection
Automated Detection:
- Policy violation monitoring
- Anomalous behavior detection
- Resource usage anomalies
- Failed authentication tracking
Alert Classification:
pub enum SecurityEventSeverity {
Info, // Normal security events
Low, // Minor policy violations
Medium, // Suspicious behavior
High, // Confirmed security issues
Critical, // Active security breaches
}
pub struct SecurityEvent {
pub id: Uuid,
pub timestamp: SystemTime,
pub severity: SecurityEventSeverity,
pub category: SecurityEventCategory,
pub description: String,
pub affected_components: Vec<ComponentId>,
pub recommended_actions: Vec<String>,
}
Incident Response Workflow
graph TB
A[Security Event] --> B[Event Classification]
B --> C{Severity Level}
C -->|Info/Low| D[Log Event]
C -->|Medium| E[Alert Security Team]
C -->|High| F[Automatic Mitigation]
C -->|Critical| G[Emergency Response]
F --> H[Isolate Affected Components]
F --> I[Revoke Compromised Credentials]
F --> J[Preserve Evidence]
G --> H
G --> K[Notify Leadership]
G --> L[External Incident Response]
Recovery Procedures
Automated Recovery:
- Agent restart with clean state
- Key rotation for compromised credentials
- Policy updates to prevent recurrence
- System health verification
Manual Recovery:
- Forensic analysis of security events
- Root cause analysis and remediation
- Security control updates
- Incident documentation and lessons learned
Security Best Practices
Development Guidelines
- Secure by Default: All security features enabled by default
- Principle of Least Privilege: Minimal permissions for all operations
- Defense in Depth: Multiple security layers with redundancy
- Fail Securely: Security failures should deny access, not grant it
- Audit Everything: Complete logging of security-relevant operations
Deployment Security
Environment Hardening:
# Disable unnecessary services
systemctl disable cups bluetooth
# Kernel hardening
echo "kernel.dmesg_restrict=1" >> /etc/sysctl.conf
echo "kernel.kptr_restrict=2" >> /etc/sysctl.conf
# File system security
mount -o remount,nodev,nosuid,noexec /tmp
Container Security:
# Use minimal base image
FROM scratch
COPY --from=builder /app/symbiont /bin/symbiont
# Run as non-root user
USER 1000:1000
# Set security options
LABEL security.no-new-privileges=true
Operational Security
Monitoring Checklist:
- Real-time security event monitoring
- Policy violation tracking
- Resource usage anomaly detection
- Failed authentication monitoring
- Certificate expiration tracking
Maintenance Procedures:
- Regular security updates and patches
- Key rotation on schedule
- Policy review and updates
- Security audit and penetration testing
- Incident response plan testing
Security Configuration
Environment Variables
# Cryptographic settings
export SYMBIONT_CRYPTO_PROVIDER=ring
export SYMBIONT_KEY_STORE_TYPE=hsm
export SYMBIONT_HSM_CONFIG_PATH=/etc/symbiont/hsm.conf
# Audit settings
export SYMBIONT_AUDIT_ENABLED=true
export SYMBIONT_AUDIT_STORAGE=/var/audit/symbiont
export SYMBIONT_AUDIT_RETENTION_DAYS=2555 # 7 years
# Security policies
export SYMBIONT_POLICY_ENFORCEMENT=strict
export SYMBIONT_DEFAULT_SANDBOX_TIER=gvisor
export SYMBIONT_TOFU_ENABLED=true
Security Configuration File
[security]
# Cryptographic settings
crypto_provider = "ring"
signature_algorithm = "ed25519"
encryption_algorithm = "chacha20_poly1305"
# Key management
key_rotation_interval_days = 90
hsm_enabled = true
hsm_config_path = "/etc/symbiont/hsm.conf"
# Audit settings
audit_enabled = true
audit_storage_path = "/var/audit/symbiont"
audit_retention_days = 2555
audit_compression = true
# Sandbox security
default_sandbox_tier = "gvisor"
sandbox_escape_detection = true
resource_limit_enforcement = "strict"
# Network security
tls_min_version = "1.3"
certificate_pinning = true
network_isolation = true
# Policy enforcement
policy_enforcement_mode = "strict"
policy_violation_action = "deny_and_alert"
emergency_override_enabled = false
[tofu]
enabled = true
key_verification_required = true
trust_on_first_use_timeout_hours = 24
automatic_key_pinning = false
Security Metrics
Key Performance Indicators
Security Operations:
- Policy evaluation latency: <1ms average
- Audit event generation rate: 10,000+ events/second
- Security incident response time: <5 minutes
- Cryptographic operation throughput: 70,000+ ops/second
Compliance Metrics:
- Policy compliance rate: >99.9%
- Audit trail integrity: 100%
- Security event false positive rate: <1%
- Incident resolution time: <24 hours
Risk Assessment:
- Vulnerability patching time: <48 hours
- Security control effectiveness: >95%
- Threat detection accuracy: >99%
- Recovery time objective: <1 hour
Future Enhancements
Advanced Cryptography
Post-Quantum Cryptography:
- NIST-approved post-quantum algorithms
- Hybrid classical/post-quantum schemes
- Migration planning for quantum threats
Homomorphic Encryption:
- Privacy-preserving computation on encrypted data
- CKKS scheme for approximate arithmetic
- Integration with machine learning workflows
Zero-Knowledge Proofs:
- zk-SNARKs for computation verification
- Privacy-preserving authentication
- Compliance proof generation
AI-Enhanced Security
Behavior Analysis:
- Machine learning for anomaly detection
- Predictive security analytics
- Adaptive threat response
Automated Response:
- Self-healing security controls
- Dynamic policy generation
- Intelligent incident classification
Next Steps
- Contributing - Security development guidelines
- Runtime Architecture - Technical implementation details
- API Reference - Security API documentation
- Compliance Guide - Regulatory compliance information
The Symbiont security model provides enterprise-grade protection suitable for regulated industries and high-assurance environments. Its layered approach ensures robust protection against evolving threats while maintaining operational efficiency.