DSL Guide

Master the Symbi DSL for building policy-aware, secure AI agents.

Table of contents

  1. Overview
    1. Key Features
  2. Language Syntax
    1. Basic Structure
    2. Comments
  3. Metadata Blocks
    1. Metadata Fields
  4. Agent Definitions
    1. Basic Agent Structure
    2. Agent Parameters
    3. Capabilities Declaration
  5. Policy Definitions
    1. Policy Structure
    2. Access Control Policies
    3. Data Classification Policies
    4. Complex Policy Logic
  6. Type System
    1. Primitive Types
    2. Collection Types
    3. Security-Aware Types
    4. Custom Types
  7. Execution Context
    1. Memory Management
    2. Privacy Settings
    3. Security Configuration
  8. Built-in Functions
    1. Data Processing
    2. Cryptographic Operations
    3. Audit and Logging
  9. Inter-Agent Communication
    1. Direct Messaging
    2. Publish-Subscribe Pattern
    3. Secure Communication
  10. Error Handling
    1. Try-Catch Blocks
    2. Error Recovery
  11. Advanced Features
    1. Conditional Compilation
    2. Macros and Code Generation
    3. Integration with External Systems
  12. Best Practices
    1. Security Guidelines
    2. Performance Optimization
    3. Code Organization
  13. Examples
    1. Healthcare Data Processor
    2. Financial Transaction Monitor
  14. Next Steps

Overview

The Symbi DSL is a domain-specific language designed for creating autonomous, policy-aware agents. It combines traditional programming constructs with advanced security features, cryptographic operations, and declarative policy definitions.

Key Features

  • Security-First Design: Built-in policy enforcement and audit capabilities
  • Declarative Policies: Express security requirements as code
  • Cryptographic Operations: Native support for encryption, signing, and proofs
  • Inter-Agent Communication: Built-in messaging and collaboration patterns
  • Type Safety: Strong typing with security-aware type annotations

Language Syntax

Basic Structure

Every Symbi program consists of optional metadata, imports, and agent definitions:

metadata {
    version = "1.0.0"
    author = "developer"
    description = "Example agent"
}

import data_processing as dp;
import security_utils;

agent process_data(input: DataSet) -> Result {
    // Agent implementation
}

Comments

// Single-line comment

/*
 * Multi-line comment
 * Supports markdown formatting
 */

Metadata Blocks

Metadata provides essential information about your agent:

metadata {
    version = "1.2.0"
    author = "ThirdKey Security Team"
    description = "Healthcare data analysis agent with HIPAA compliance"
    license = "Proprietary"
    tags = ["healthcare", "hipaa", "analysis"]
    min_runtime_version = "0.5.0"
    dependencies = ["medical_nlp", "privacy_tools"]
}

Metadata Fields

Field Type Required Description
version String Yes Semantic version of the agent
author String Yes Agent author or organization
description String Yes Brief description of agent functionality
license String No License identifier
tags Array[String] No Classification tags
min_runtime_version String No Minimum required runtime version
dependencies Array[String] No External dependencies

Agent Definitions

Basic Agent Structure

agent agent_name(param1: Type1, param2: Type2) -> ReturnType {
    capabilities = ["capability1", "capability2"]
    
    policy policy_name {
        // Policy rules
    }
    
    with configuration_options {
        // Agent implementation
    }
}

Agent Parameters

Support for various parameter types:

agent complex_agent(
    // Basic types
    name: String,
    age: Integer,
    active: Boolean,
    
    // Optional parameters
    email: Optional<String>,
    
    // Complex types
    data: Array<Record>,
    config: Map<String, Value>,
    
    // Security-aware types
    sensitive_data: EncryptedData<PersonalInfo>,
    credentials: SecureString
) -> ProcessingResult {
    // Implementation
}

Capabilities Declaration

Declare what your agent can do:

agent data_processor(input: DataSet) -> Analysis {
    capabilities = [
        "data_analysis",        // Core data processing
        "statistical_modeling", // Advanced analytics
        "report_generation",    // Output formatting
        "audit_logging"         // Compliance tracking
    ]
    
    // Implementation
}

Policy Definitions

Policies define security and compliance rules that are enforced at runtime.

Policy Structure

policy policy_name {
    allow: action_list if condition
    deny: action_list if condition
    require: requirement_list
    audit: audit_specification
    conditions: {
        field: value,
        another_field: condition
    }
}

Access Control Policies

policy medical_data_access {
    allow: ["read", "analyze"] if user.role == "doctor"
    allow: ["read"] if user.role == "nurse" 
    deny: ["export", "print"] if data.contains_pii == true
    require: [
        user.clearance >= "medical_professional",
        session.mfa_verified == true,
        audit_trail = true
    ]
}

Data Classification Policies

policy data_classification {
    conditions: {
        classification: "confidential",
        retention_period: 7.years,
        geographic_restriction: "EU",
        encryption_required: true
    }
    
    allow: process(data) if data.anonymized == true
    deny: store(data) if data.classification == "restricted"
    audit: all_operations with digital_signature
}

Complex Policy Logic

policy dynamic_access_control {
    allow: read(resource) if (
        user.department == resource.owner_department ||
        user.role == "administrator" ||
        (user.role == "auditor" && current_time.business_hours)
    )
    
    deny: write(resource) if (
        resource.locked == true ||
        user.last_training < 30.days_ago ||
        system.maintenance_mode == true
    )
    
    require: approval("supervisor") for operations on sensitive_data
}

Type System

Primitive Types

// Basic types
let name: String = "Alice";
let count: Integer = 42;
let rate: Float = 3.14;
let active: Boolean = true;
let data: Bytes = b"binary_data";

Collection Types

// Arrays
let numbers: Array<Integer> = [1, 2, 3, 4, 5];
let names: Array<String> = ["Alice", "Bob", "Charlie"];

// Maps
let config: Map<String, String> = {
    "host": "localhost",
    "port": "8080",
    "ssl": "true"
};

// Sets
let unique_ids: Set<String> = {"id1", "id2", "id3"};

Security-Aware Types

// Encrypted types
let secret: EncryptedString = encrypt("sensitive_data", key);
let secure_number: EncryptedInteger = encrypt(42, key);

// Private data with differential privacy
let private_data: PrivateData<Float> = PrivateData::new(value, epsilon=1.0);

// Verifiable results with zero-knowledge proofs
let verified_result: VerifiableResult<Analysis> = VerifiableResult {
    value: analysis,
    proof: generate_proof(analysis),
    signature: sign(analysis)
};

Custom Types

// Struct definitions
struct PersonalInfo {
    name: String,
    email: EncryptedString,
    phone: Optional<String>,
    birth_date: Date
}

// Enum definitions
enum SecurityLevel {
    Public,
    Internal,
    Confidential,
    Restricted
}

// Type aliases
type UserId = String;
type EncryptedPersonalInfo = EncryptedData<PersonalInfo>;

Execution Context

Configure how your agent executes with the with clause:

Memory Management

agent persistent_agent(data: DataSet) -> Result {
    with memory = "persistent", storage = "encrypted" {
        // Agent state persists across sessions
        store_knowledge(data);
        return process_with_history(data);
    }
}

agent ephemeral_agent(query: String) -> Answer {
    with memory = "ephemeral", cleanup = "immediate" {
        // Agent state is discarded after execution
        return quick_answer(query);
    }
}

Privacy Settings

agent privacy_preserving_agent(sensitive_data: PersonalInfo) -> Statistics {
    with privacy = "differential", epsilon = 1.0 {
        // Add differential privacy noise
        let noisy_stats = compute_statistics(sensitive_data);
        return add_privacy_noise(noisy_stats, epsilon);
    }
}

Security Configuration

agent high_security_agent(classified_data: ClassifiedInfo) -> Report {
    with 
        security = "maximum",
        sandbox = "firecracker",
        encryption = "homomorphic",
        requires = "top_secret_clearance"
    {
        // High-security processing
        return process_classified(classified_data);
    }
}

Built-in Functions

Data Processing

// Validation functions
if (validate_input(data)) {
    // Process valid data
}

// Data transformation
let cleaned_data = sanitize(raw_data);
let normalized = normalize(cleaned_data);

Cryptographic Operations

// Encryption/Decryption
let encrypted = encrypt(plaintext, public_key);
let decrypted = decrypt(ciphertext, private_key);

// Digital signatures
let signature = sign(message, private_key);
let valid = verify(message, signature, public_key);

// Zero-knowledge proofs
let proof = prove(statement);
let verified = verify_proof(proof, public_statement);

Audit and Logging

// Audit logging
audit_log("operation_started", {
    "operation": "data_processing",
    "user": user.id,
    "timestamp": now()
});

// Security events
security_event("policy_violation", {
    "policy": "data_access",
    "user": user.id,
    "resource": resource.id
});

Inter-Agent Communication

Direct Messaging

agent coordinator(task: Task) -> Result {
    with communication = "secure" {
        // Send task to specialized agent
        let result = agent security_analyzer.analyze(task);
        
        if (result.safe) {
            let processed = agent data_processor.process(task);
            return processed;
        } else {
            return reject("Security check failed");
        }
    }
}

Publish-Subscribe Pattern

agent event_publisher(event: Event) -> Confirmation {
    with communication = "broadcast" {
        // Broadcast event to all subscribers
        broadcast(EventNotification {
            type: event.type,
            data: event.data,
            timestamp: now()
        });
        
        return Confirmation { sent: true };
    }
}

agent event_subscriber() -> Void {
    with communication = "subscribe" {
        // Subscribe to specific events
        let events = subscribe(EventNotification);
        
        for event in events {
            process_event(event);
        }
    }
}

Secure Communication

agent secure_collaborator(request: SecureRequest) -> SecureResponse {
    with 
        communication = "encrypted",
        authentication = "mutual_tls"
    {
        // Establish secure channel
        let channel = establish_secure_channel(request.source);
        
        // Send encrypted response
        let response = process_request(request);
        return encrypt_response(response, channel.key);
    }
}

Error Handling

Try-Catch Blocks

agent robust_processor(data: DataSet) -> Result {
    try {
        let validated = validate_data(data);
        let processed = process_data(validated);
        return Ok(processed);
    } catch (ValidationError e) {
        audit_log("validation_failed", e.details);
        return Error("Invalid input data");
    } catch (ProcessingError e) {
        audit_log("processing_failed", e.details);
        return Error("Processing failed");
    }
}

Error Recovery

agent fault_tolerant_agent(input: Input) -> Result {
    let max_retries = 3;
    let retry_count = 0;
    
    while (retry_count < max_retries) {
        try {
            return process_with_fallback(input);
        } catch (TransientError e) {
            retry_count += 1;
            sleep(exponential_backoff(retry_count));
        } catch (PermanentError e) {
            return Error(e.message);
        }
    }
    
    return Error("Max retries exceeded");
}

Advanced Features

Conditional Compilation

agent development_agent(data: DataSet) -> Result {
    capabilities = ["development", "testing"]
    
    #if debug {
        debug_log("Processing data: " + data.summary);
    }
    
    #if feature.enhanced_security {
        policy strict_security {
            require: multi_factor_authentication
            audit: all_operations with timestamps
        }
    }
    
    // Implementation
}

Macros and Code Generation

// Define reusable policy template
macro secure_data_policy($classification: String) {
    policy secure_access {
        allow: read(data) if user.clearance >= $classification
        deny: export(data) if data.contains_pii
        audit: all_operations with signature
    }
}

agent classified_processor(data: ClassifiedData) -> Report {
    // Use the macro
    secure_data_policy!("secret");
    
    // Implementation
}

Integration with External Systems

agent api_integrator(request: APIRequest) -> APIResponse {
    capabilities = ["api_access", "data_transformation"]
    
    policy api_access {
        allow: call(external_api) if api.rate_limit_ok
        require: valid_api_key
        audit: all_api_calls with response_codes
    }
    
    with 
        timeout = 30.seconds,
        retry_policy = "exponential_backoff"
    {
        let response = call_external_api(request);
        return transform_response(response);
    }
}

Best Practices

Security Guidelines

  1. Always define policies for data access and operations
  2. Use encrypted types for sensitive data
  3. Implement audit logging for compliance
  4. Validate all inputs before processing
  5. Use least privilege principle in policy definitions

Performance Optimization

  1. Use ephemeral memory for short-lived agents
  2. Batch operations when possible
  3. Implement proper error handling with retries
  4. Monitor resource usage in execution context
  5. Use appropriate data types for your use case

Code Organization

  1. Group related policies in the same block
  2. Use descriptive capability names
  3. Document complex policy logic with comments
  4. Separate concerns into different agents
  5. Reuse common patterns with macros

Examples

Healthcare Data Processor

metadata {
    version = "2.1.0"
    author = "Medical AI Team"
    description = "HIPAA-compliant patient data analyzer"
    tags = ["healthcare", "hipaa", "privacy"]
}

agent medical_analyzer(patient_data: EncryptedPatientRecord) -> MedicalInsights {
    capabilities = [
        "medical_analysis",
        "privacy_preservation", 
        "audit_logging",
        "report_generation"
    ]
    
    policy hipaa_compliance {
        allow: analyze(data) if user.medical_license.valid
        deny: export(data) if data.contains_identifiers
        require: [
            user.hipaa_training.completed,
            session.secure_connection,
            audit_trail = true
        ]
        conditions: {
            data_classification: "medical",
            retention_period: 7.years,
            access_logging: "detailed"
        }
    }
    
    with 
        memory = "encrypted",
        privacy = "differential",
        security = "high",
        requires = "medical_clearance"
    {
        try {
            let decrypted = decrypt(patient_data, medical_key);
            let anonymized = anonymize_data(decrypted);
            let insights = analyze_medical_data(anonymized);
            
            audit_log("analysis_completed", {
                "patient_id_hash": hash(decrypted.id),
                "insights_generated": insights.count,
                "timestamp": now()
            });
            
            return insights;
        } catch (DecryptionError e) {
            security_event("decryption_failed", e.details);
            return Error("Unable to process patient data");
        }
    }
}

Financial Transaction Monitor

agent fraud_detector(transaction: Transaction) -> FraudAssessment {
    capabilities = ["fraud_detection", "risk_analysis", "real_time_processing"]
    
    policy financial_compliance {
        allow: analyze(transaction) if user.role == "fraud_analyst"
        deny: store(transaction.details) if transaction.amount > 10000
        require: [
            user.financial_license.valid,
            system.compliance_mode.active,
            real_time_monitoring = true
        ]
        audit: all_decisions with reasoning
    }
    
    with 
        memory = "ephemeral",
        timeout = 500.milliseconds,
        priority = "high"
    {
        let risk_score = calculate_risk(transaction);
        let historical_pattern = analyze_pattern(transaction.account_id);
        
        if (risk_score > 0.8 || historical_pattern.suspicious) {
            alert_fraud_team(transaction, risk_score);
            return FraudAssessment {
                risk_level: "high",
                recommended_action: "block_transaction",
                confidence: risk_score
            };
        }
        
        return FraudAssessment {
            risk_level: "low",
            recommended_action: "approve",
            confidence: 1.0 - risk_score
        };
    }
}

Next Steps

Ready to build your first agent? Check out our getting started guide or explore the runtime examples.